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Highly substituted piperidines are found in numerous bioactive
alkaloid natural products and pharmaceuticals.1 Thus, considerable
attention has been paid to the synthesis of this moiety.2 We
envisioned that cycloisomerization of mixed N,O-acetal A generated
from homoproparygylic amines to 4-methoxy-1,2,3,6-tetrahydro-
pyridine B (Scheme 1) would be highly useful in accessing
piperidine frameworks, because the enol ether could be easily
transformed into other functional groups.

Based on the well-established chemistry of iminium ions, we
initially considered using an oxophilic metal-catalyzed method
depicted in pathway 1.3 In this scenario, the key step involves the
endocyclization of iminium ion C onto alkynes (alkyne aza-Prins
reaction).4 Apparently simple reactions of this type have been
surprisingly rare, due to the slow cyclization of C to form unstable
vinyl cation D and the rapidly competing aza-Cope rearrangement
of C (eq 1).5 In fact, this type of alkyne aza-Prins reaction reported
in the literature has been limited to the 4-amino-1-butyne substrates
possessing no branch alkyl groups.6,7

In view of the above-mentioned inherent problems associated
with the classical alkyne aza-Prins reactions, we envisioned an
alternative pathway promoted by the addition of the methoxy group
onto the metal-activated alkynes (pathway 2).8,9 Even though
generation of iminium ion F via this pathway is unprecedented,
we were highly encouraged by alkoxycyclization-induced generation
of an oxacarbenium ion reported by Zhang.10 Moreover, the
methoxy group should accelerate cyclization of F (Scheme 1) to
form relatively stable carbocation G. Thus, we anticipated that
potential limitations derived from aza-Cope rearrangement of F
could be minimized in this pathway (eq 1).11

To test the viability of this catalytic cycle, we examined easily
accessible mixed N,O-acetal 1a possessing an electron-withdrawing
tosyl group. Based on our previous experience in the related area,9b

we explored various cationic gold(I) complexes. While using 2 mol
% of 4a showed poor conversion (∼10%), switching to a more
electrophilic complex 4b (2 mol %) quickly completed the reaction to
generate the methoxypyridine 2a in 86% yield (Table 1, entry 1) with
no hydrolysis of the starting material.12a In this case, formation of the
piperidin-4-one 3a (∼10% yield) was noted, which arose from the
hydration of 2a. After extensive efforts to minimize this undesired
hydration, we discovered that the addition of 1.6 mol % (0.8 equiv to
Au) of 2,6-di-tert-butylpyridine (2,6-DBP) improved the yield to 96%

with little effect on the catalytic efficiency (entry 2).12b,c The synthetic
utility of 2a was easily demonstrated by the conversion into 3a in
99% yield under acidic conditions. Interestingly, even the cbz-derived
mixed acetal 1b was successfully engaged in the reaction to give the
mixture of cycloisomerization product 2b and the ketone 3b in
comparable 90% combined yield.12d,e Again, addition of 2,6-DBP
suppressed the hydration, improving the yield of 2b to 91%. The
unstable methoxytetrahydro-pyridine 2b was then converted into
piperidin-4-one 3b in 98% yield.12f

With the optimized conditions in hand, we explored the scope of
the gold(I)-catalyzed cycloisomerization using mixed acetals generated
from tosyl- or cbz-protected homopropargylic amines (Table 2).13

Moreover, all cycloisomerization products except for entry 3 were
converted into the corresponding piperidin-4-ones for characteriza-
tion.14 Remarkable chemoselectivity was noted. For example, a
potentially competing Friedel-Craft reaction of the acyliminium ion
generated from substrate 5 was not observed (entry 1). The reaction
was also compatible with terminal olefin (entry 2), and even with the
acid-labile cyclic acetal group (entry 3). Next, we explored the effect
of alkyl substitution on the cycloisomerization. Elimination (entry 4)
or addition (entry 5) of an akyl group at the homopropargylic position

Scheme 1. Two Pathways for the Cycloisomerization of A

Table 1. Optimization of the Reaction Condition

entry substrate catalyst
(mol %)

additive
(mol %)

time
(min) product yielda

1 1a 4b (2) - 10 2a 86b

2 1a 4b (2) 2,6-DBP (1.6) 10 2a 96 (95c)
3 1b 4b (2) - 10 2b 55d

4 1b 4b (2) 2,6-DBP (1.6) 10 2b 91 (89c)

a Isolated yield. b Ketone 3a was obtained in 10% yield. c Isolated
yield of the ketone after hydration. d Ketone 3b was obtained in 35% yield.
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slowed the reaction, requiring 5 mol % catalyst loading for complete
conversion. In the latter case, hydration was not observed even when
the reaction was performed without 2,6-DBP. Although alkyl substitu-
tion at the propargylic position in an acyclic substrate had little effect
(entry 6), similar substitution in cyclic substrates possessing a cis-
relationship of the alkyne and amine group slowed the reaction (entries
7-9). While the cycloisomerization of the cyclopentane substrate 17
(entry 7) and cycloheptane substrate 21 (entry 9) was quickly completed
at rt with 5 mol % catalyst loading, the reaction of cyclohexane
substrate 19 was much slower. In this case, hydration of the
cycloisomerization product was observed. Thus, the cycloisomerization
was performed without 2,6-DBP. The crude mixture was then treated
with p-TsOH to give the piperidin-4-one 20 in 63% yield. Interestingly,
trans-isomer 23 was more reactive than the cis-isomer 19, providing
the cycloisomerization product in 84% yield in the presence of 2 mol
% catalyst.

Notably, no epimerization was observed in the reaction of the
substrates possessing alkyl groups at the propargylic position.14 This
result indeed supports our hypothesis that the cyclization of the
intermediate F is significantly faster than the competing aza-Cope
rearrangement (eq 1). This rationale is further strengthened by the
reaction of enantioenriched substrate 25,13 which produced 26 in
93% yield (two steps) with no loss of ee (eq 3).15 Furthermore,
this example firmly establishes the utility of the proposed reaction
in the synthesis of optically active piperidin-4-ones.

In summary, we have developed a gold(I)-catalyzed formal alkyne
aza-Prins reaction of mixed N,O-acetals derived from homopropargylic

amines. This new gold(I)-catalyzed reaction successfully circumvents
a long-standing problem of the classical aza-Prins reaction and, thus,
opens up a new way to access piperidine alkaloids. Extrapolation of
the reaction to the stereoselective synthesis of 2,6-disubstituted
piperidines and tetrahydropyrans, as well as the application to the total
synthesis of bioactive natural products, is in progress.
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2008, 350, 2059.

(10) Zhang, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 12598.
(11) For related discussion in silicon-directed aza-Prins reaction, see: Castro, P.;

Overman, L. E.; Zhang, X.; Mariano, P. S. Tetrahedron Lett. 1993, 34, 5243.
(b) For an example of Prins reaction in the gold(I)-catalyzed reaction, see:
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Table 2. Scope of the Gold(I)-Catalyzed Reaction

a Racemic substrates. b Two-step yield. c Isolated yield of the
cycloisomerization product. d Not measured. e 2,6-DBP was not used.
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